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Abstract. We present a systematization of the special-function type solutions of continuous and
discrete Painlev́e equations. Our method is to start from PVI and construct its special solutions
from the solutions of the hypergeometric equation, and by coalescence obtain the lower Painlevé
equations together with their special solutions. In the discrete case we study the ‘symmetric’,
one-component, three-point mapping forms of discrete Painlevé equations starting from d-PV.

1. Introduction

The Painlev́e transcendents were introduced (by Painlevé and his collaborators) as
extensions of special functions in the nonlinear domain. The Riccati equation, which
is the only integrable nonlinear first-order, first-degree equation, does not introduce new
transcendents since it can be reduced to a second-order linear equation through a Cole–
Hopf transformation. However, at second order the problem is highly non-trivial and it
led to the discovery of the new transcendents that were named after Painlevé [1]. The
discovery of the Painlev́e equations (P) was due to application of the absence of movable
multivaluedness requirement [2] (a property also named after Painlevé). This guaranteed the
integrability of these second-order ordinary differential equations and allowed the definition
of new functions through their solutions. The actual integration of the Painlevé equations
was achieved, much later, through application of inverse scattering techniques [3].

While the full solution of the Painlev́e equations is quite complicated and requires
the consideration of (linear) integral equations, there exist also simpler solutions. These
solutions exist only for special values of the parameters of the Painlevé equations and can
be expressed in terms of special functions [4]. One of the important features of the special-
function type solutions of the Painlevé equations is that they can be expressed in terms
of Wronskians or Casorati determinants when studied in the framework of the bilinear
formalism [5]. This is a feature that holds true both for continuous and discreteP [6].
Another type of solution also exists, the rational ones. Although their study is still lagging
behind that of the special-function solutions, several recent studies [7] have started to bridge
the gap.

Another interesting feature of the Painlevé equations is that they organize themselves
into coalescence cascades [8]. This means that, starting from the equations containing the
largest number of parameters, PVI , one can obtain equations with a smaller number of
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parameters by successive limits corresponding to the coalescence of the singularities of the
initial equation. The coalescence patterns and the degeneration of the Painlevé equations is
well known and their discrete analogues have also been studied recently [9].

In this paper we shall examine the systematics of the special-function solutions in the
framework of the coalescence procedure. Namely, we shall show that, starting from the
highest Painlev́e equation and its special solutions, one can reach the lower ones and, at
the same time, construct their solutions. This will be performed for the continuous case
(which is moderately well known) and also for the discrete one (which is less well known,
despite recent activity in this domain). Before proceeding to the examination of specific
cases, let us present the general method for obtaining the special-function solutions for
continuous and discrete (symmetric)P. The general form of a continuous Painlevé equation
is

w′′ = f (w′, w, z) (1.1)

wheref is polynomial inw′, rational inw and analytic inz. In order to find a solution of
(1.1) in terms of special functions we assume thatw is a solution of a Riccati

w′ = Aw2+ Bw + C (1.2)

whereA,B,C are functions ofz to be determined. Substituting (1.2) into (1.1) yields an
overdetermined system which allows the determination ofA,B,C andfixes the parameters
of (1.1). Equation (1.2) is subsequently linearized through the transformation

w = − u
′

Au
. (1.3)

In the case of the Painlevé equations the end result is an equation of the hypergeometric
family. The discrete Painlevé equations have the form

xn+1 = f1(xn, n)− xn−1f2(xn, n)

f4(xn, n)− xn−1f3(xn, n)
(1.4)

wherefi are polynomials inxn of degree four at maximum. The solutions of (1.4) in terms
of special functions proceeds through the introduction of a discrete Riccati

xn+1 = Axn + B
Cxn +D (1.5)

whereA,B,C,D are functions ofn to be determined by substituting (1.5) into (1.4). As
in the continuous case, this fixes the parameters of the d-P. The linearization of (1.5) is
again obtained through a Cole–Hopf transformation

xn =
(
Dn

Cn

)
yn+1− yn

yn
(1.6)

leading to the linear equation

Dn+1

Cn+1
yn+2−

(
Dn+1

Cn+1
+ An
Cn

)
yn+1+

(
An

Cn
− Bn

Dn

)
yn = 0. (1.7)

Equation (1.7) turns out to be, in all cases concerning discrete Painlevé equations, the
discrete analogue of the hypergeometric equation or one of its degenerate forms.
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2. The continuous Painlev́e equations’ cascade

The results presented in this section are not all new in the sense that the special-function
solutions of the continuous Painlevé equations have been known for some years [4]. Our
main aim here is to insert these solutions into the coalescence frame. We start with the PVI

equation

W ′′ = W ′2

2

(
1

W
+ 1

W − 1
+ 1

W − Z
)
−W ′

(
1

Z
+ 1

Z − 1
+ 1

W − Z
)

+W(W − 1)(W − Z)
2Z2(Z − 1)2

(
A− BZ

W 2
+ C Z − 1

(W − 1)2
− (D − 1)Z(Z − 1)

(W − Z)2
)
.

(2.1)

When one requires the existence of a solution given by a Riccati (1.2) the result is

W ′ = P

Z(Z − 1)
W 2+ QZ +M

Z(Z − 1)
W + N

Z − 1
(2.2)

where the parametersP,Q,M,N are related through

P +Q+M +N = 0 (2.3)

and their relation to those of PVI is

A = P 2 B = N2 C = (Q+N)2 D = (P +Q− 1)2. (2.4)

The condition for the existence of (2.2) is obtained when one eliminatesN,P,Q from
equation (2.4)

ε1

√
A+ ε2

√
B + ε3

√
C + ε4

√
D = 1 (2.5)

for some choice of signsεi . The linearization of (2.2) is obtained in a straightforward way
through

W = −Z(Z − 1)U ′

PU
(2.6)

and the transformationζ = (1− Z)−1 converts (2.6) to a hypergeometric equation

ζ(1− ζ )d2U

dζ 2
+ (Q− (1−N − P)ζ )dU

dζ
−NPU = 0. (2.7)

Before proceeding to the first coalescence we introduce the following convention of notation.
The variables and parameters of the ‘higher’ equation will be represented by upper-case
letters while those of the ‘lower’ equation will be represented by lower-case ones. The
small parameter will be denoted byδ and the coalescence corresponds to the limitδ→ 0.

Going from PVI to PV we haveW = w, Z = 1+ δz, A = a, B = b, C = d/δ2 + c/δ,
D = d/δ2. One obtains thus PV

w′′ = w′2
(

1

2w
+ 1

w − 1

)
− w

′

z
+ (w − 1)2

2z2

(
aw − b

w

)
+ cw

2z
− dw(w + 1)

2(w − 1)
. (2.8)

This coalescence limit is compatible with the linearizable case providedN = n, P = p,
Q = q/δ (andM = −q/δ − p − n). Using (2.3), the Riccati becomes

w′ = pw2

z
+ (qz− p − n)w

z
+ n
z
. (2.9)

The parameter constraints are transformed into

a = p2 b = n2 c = 2q(n+ 1− p) d = q2 (2.10)
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and the condition is readily obtained

ε1
√
a + ε2

√
b + ε3

c

2
√
d
= 1 (2.11)

for some choice of signsεi . Equation (2.9) is linearized through a Cole–Hopf transformation
w = −(z/p)u′/u to a confluent hypergeometric equation

u′′ −
(
q − 1+ n+ p

z

)
u′ + npu

z2
= 0 (2.12)

which can be transformed either to a Kummer or a Whittaker equation.
From PV we can obtain two coalescence limits to PIV and PIII . For the first one we take

W = δw, Z = 1+ 2δz, A = 1/4δ4, B = b, C = −1/2δ4, D = 1/4δ4 + a/δ2 and obtain
PIV in the form

w′′ = w′2

2w
+ 3w3

2
+ 4zw2+ 2w(z2+ a)− 2b

w
. (2.13)

This limit is compatible with the Riccati (2.9) which goes over to

w′ = w2+ 2zw + 2n (2.14)

provided,P = Q = 1/2δ2 andN = n. The coefficients of PIV (2.13), in the linearizable
case are given by

a = n+ 1 b = n2 (2.15)

with the obvious relation

a + ε
√
b = 1 (2.16)

for some choice of the signε. The Riccati (2.14) linearizes throughw = −u′/u to the
Hermite equation

u′′ − 2zu′ + 2nu = 0. (2.17)

For the second limit, to PIII , we takeW = 1+ δw, Z = z, A = b/δ2 + a/δ, B = b/δ2,
C = cδ andD = dδ2 and obtain PIII in the non-canonical form

w′′ = w′2

w
− w

′

z
+ bw

3

z2
+ aw

2

2z2
+ c

2z
− d

w
. (2.18)

For the linearization of (2.18) we obtain the Riccati

w′ = nw2

z
+ pw

z
+ q (2.19)

from the limit of (2.9) throughN = n/δ, P = n/δ+p andQ = qδ. The parameters of the
Riccati are related to those of PIII through

a = 2np b = n2 c = 2q(1− p) d = q2 (2.20)

corresponding to the linearizability condition

ε1
a

2
√
b
+ ε2

c

2
√
d
= 1 (2.21)

for some choice of signs. The Riccati (2.19) is linearized through the Cole–Hopf
transformationw = −(z/n)u′/u leading to the equation

zu′′ + (1− p)u′ + nqu = 0. (2.22)

The solution of the latter is given in terms of the Bessel functionJ asu = zp/2 Jp(2√nqz).
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Both PIV and PIII go to PII by coalescence. In the first case we take:W = 2/δ3+w/δ,
Z = −2/δ3+ δz, A = 2/δ6+ a, B = 4/δ12 and obtain

w′′ = 2w3+ 8wz+ 4a. (2.23)

The Riccati (2.14) goes over to

w′ = w2+ 4z (2.24)

provided we takeN = 2/δ6 with the linearizability condition

a = 1. (2.25)

The linearization of (2.24) is straightforward (w = −u′/u), and leads to the Airy equation

u′′ + 4zu = 0. (2.26)

In the second case we start from the non-canonical form of PIII (2.18): it turns out that this
does not make any difference at the level of PII apart from some unimportant coefficients.
We putW = 1+ δw, Z = 1+ δ2z, A = −δ−6, B = δ−6/4+ bδ−3, C = δ−6, D = δ−6/4
and find, at the limitδ→ 0, PII in the form

w′′ = 1
2w

3+ 1
2wz+ b. (2.27)

The limit of the Riccati (2.19), is obtained throughQ = δ−3/2, N = δ−3/2, P = −δ−3

w′ = 1
2(w

2+ z). (2.28)

The linearizability condition is simply

2εb = 1 (2.29)

and the linearization of the Riccati (2.28), withw = −2u′/u, leads again to the Airy
equation

u′′ + z
4
u = 0. (2.30)

Equation PII degenerates to PI through the appropriate limit. However, this coalescence
does not present any interest for our purpose since it is incompatible with the existence of
a Riccati equation. Indeed PI does not possess any linearizable solution or, as a matter of
fact, any particular solution.

3. Coalescence cascade for the symmetric discrete Painlevé equations

The discreteP we are going to work with are the ones known as ‘symmetric’ forms, given
by the one-component mapping (1.4). We have chosen for this study the ‘standard’ discrete
Painlev́e equations which were first identified in [6]. These equations organize themselves
in a coalescence cascade but the latter is not complete since the explicit form of d-PVI is
still missing. Moreover, this succession of discrete equations contains equations of both
q-type (q-PV, q-PIII ) and of difference type (d-PIV d-PII ). This is not unusual. As a matter
of fact the degeneration through coalescence ofq-equations quite often leads to equations
of difference type.

Below, we present our results on the cascade ofP and their special solutions starting
from q-PV

(Xn+1Xn − 1)(XnXn−1− 1) = (Xn − U)(Xn − 1/U)(Xn − V )(Xn − 1/V )

(Xn/P − 1)(Xn/Q− 1)
(3.1)

whereU,V are constants andP,Q are proportional to3n.



5804 K M Tamizhmani et al

The most efficient way to apply the method described in the introduction (as we have
explained in previous works) is to seek a factorization of the equation into

Xn+1Xn − 1= (Xn − U)(Xn − V )
UV (Xn/P − 1)

(3.2a)

XnXn−1− 1= UV (Xn − 1/U)(Xn − 1/V )

Xn/Q− 1
. (3.2b)

Equation (3.2a) can be rewritten as a homographic mapping (discrete Riccati)

Xn+1 = Xn − U − V + UV/P
UV (Xn/P − 1)

(3.3)

and by up-shifting (3.2b) and solving forXn+1 we obtain thesamehomographic mapping
provided

UVQ3 = P. (3.4)

If this condition holds thenq-PV possesses solutions linearizable through the discrete Riccati
(3.3). The linearization of the latter was given in [10] where we have shown thatX can be
expressed in terms of discrete confluent hypergeometric functions. Indeed, puttingX = R/S
we find thatRn = P(Sn−Sn+1) andS obeys the discrete confluent hypergeometric equation

Sn+2+
(

1

3UV
− 1

)
Sn+1+ 1

3

(
1

U
− 1

P

)(
1

V
− 1

P

)
Sn = 0 (3.5)

where we are reminded thatP ∝ 3n. The continuous limit of (3.3) should coincide with the
Riccati obtained for PV in section 2. As a matter of fact, implementing the continuous limit
through3 = 1+ε , U = 1+εν, V = −1−ερ, P = (1/ε+µ)/Z andQ = (−1/ε+µ)/Z,
one does not obtain, atε → 0, the same Riccati equation. This is due to the fact that
one has also to transform the dependent variable. We have indeedX = (1+W)/(1−W)
whereW is the variable that goes over to that of PV in the continuous limit. Using this
transformation one obtains PV with a = ρ2, b = ν2, c = −8µ andd = 4. The linearization
constraint (3.4) becomes at the limitρ+ν+1= 2µ which is consistent with the continuous
condition (2.11). A computation of the continuous limit of the Riccati forW yields

W ′ = ρW 2

Z
+ (2Z − ρ + ν)W

Z
− ν

Z
(3.6)

which is exactly (2.9) withp = ρ, n = −ν andq = 2 which is in accordance with (2.10).
We proceed now to the first coalescenceq-PV → d-PIV , using the same convention

of upper/lower-case symbols as in continuousP. PuttingX = 1+ δx andU = 1+ δa,
V = 1+ δb, P = 1+ δ(z+ c) andQ = 1+ δ(z− c), i.e.3 = 1+ δα such thatz = αn+β,
we obtain, atδ→ 0 the discrete PIV

(xn+1+ xn)(xn + xn−1) = (x2
n − a2)(x2

n − b2)

(xn − z)2− c2
. (3.7)

The linearization is again obtained by factorization

xn+1+ xn = (xn − a)(xn − b)
xn − z− c (3.8a)

xn + xn−1 = (xn + a)(xn + b)
xn − z+ c (3.8b)

and the two equations are compatible if the following constraint holds

a + b + α = 2c (3.9)
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which is exactly what would result from the coalescence limit of (3.4). We must now check
that:

(a) equation (3.8a) is indeed the discrete Riccati one obtains fromq-PV through
coalescence, and

(b) its continuous limit is the Riccati for the linearizable solutions of PIV .
Both calculations are straightforward. It suffices to implement the coalescence limit on
(3.3) in order to obtain (3.8a). Moreover, the continuous limit of (3.8a), obtained through
c = 1/ε, b = 2/ε, a = νε with x = w andzn going over to the continuous variablez, is

w′ = w2− 2zw − 2ν (3.10)

i.e. the equation we obtained by linearizing PIV . Equation (3.8a) has been shown to be
solvable in terms of the discrete analogues of Hermite functions [11].

The second coalescence one can obtain fromq-PV is that toq-PIII . It is based on the
limit X = x/δ, 3 = λ, U = a/δ, V = δ/b, P = p/δ andQ = q/δ leading to

xn+1xn−1 = (xn − a)(xn − b)
(xn/p − 1)(xn/q − 1)

(3.11)

wherep = p0λ
n andq = q0λ

n. The linearization is again given by a factorization [12]

xn+1 = b

a

(xn − a)
(xn/p − 1)

(3.12a)

xn−1 = a

b

(xn − b)
(xn/q − 1)

(3.12b)

and the compatibility of (3.12a) and (3.12b) is

bp = aqλ (3.13)

in which case (3.12) is solved in terms of discrete Bessel functions. Again, (3.13) is exactly
the limit of (3.4) under the coalescence procedure. In perfect parallel to theq-PV → d-PIV

case we can show that (3.12a) is the coalescence limit of (3.3). As far as the continuous
limit is concerned we must take into account the non-canonical character of (2.18). Putting
x = w, λ = 1+ ε, b = −a + εc, p0 = −1 andq0 = 1+ εd we find for the continuous
limit of q-PIII the (again non-canonical)

w′′ = w′2

w
− w

′

z
+ w3+ dw

2

z
− c

z2
− a2

wz2
(3.14)

wherez = nε. The continuous limit of (3.12a) is the Riccati

w′ = −w2− c

a

w

z
− a
z

(3.15)

which, with w = u′/u, is linearized tozu′′ + cu′/a + au = 0. The latter is solvable, as
expected, in terms of Bessel functionsu = z(a−c)/2aJ1−c/a(2(az)1/2).

Two coalescence limits remain to be considered, those of d-PIV andq-PIII to d-PII . In
the first case we putX = 1+δx, A = 1+δ, B = −1+δ, Z = 1−δ2z/4 andC = δ−δ2a/4
and find that

xn+1+ xn−1 = znxn + a
1− x2

n

. (3.16)

Starting from (3.9) we implement the coalescence limit and find that the linearizability
condition of d-PII is

a = α

2
(3.17)
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while the homographic mapping (3.8) reduces to

xn+1+ 1= a + zn
2(1− xn) (3.18a)

xn−1− 1= a − zn
2(1+ xn) . (3.18b)

This leads to the linearization of d-PII . It can be checked that the continuous limit of (3.18),
(obtained byx = εw anda = 2ε3, while the discrete variablezn is related to the continuous
variablez throughzn = 2+ 4ε2z), coincides with the Riccati (2.24) from PII .

In a similar way, one can work out the coalescenceq-PIII → d-PII . We start first by
transforming (3.16) byX = Y/Z, whereZ = 3n, to

Yn+1Yn−1 = P0Q0(Yn − A/Z)(Yn − B/Z)
(Yn − P0)(Yn −Q0)

. (3.19)

Next, we introduceY = 1+δx, P0 = 1+δ,Q0 = 1−δ, A = 1+δ+δ2a/2,B = 1−δ−δ2a/2
and3 = 1−δ2α/2 leading toZ = 1−zδ2/2 and find in the limit d-PII precisely in the form
(3.16). Again the linearizability condition, resulting from the limit of (3.13) is identical to
(3.17). The discrete Riccati is also identical to (3.18). As we have shown in [13] the
solution of the latter (and thus of d-PII for a = α/2) is given in terms of discrete Airy
functions.

4. The coalescence of the Wronskian–Casorati solutions

In the previous sections we have shown that the coalescence procedure can be applied to
the cases where the Painlevé equations are solvable through linearization in terms of special
functions. This study was limited to only the lowest of the linearizable cases, i.e. the cases
where the Painlev́e equation can be linearized through a Cole–Hopf transformation (or,
equivalently, when it can be reduced to a Riccati). However, it is well known that higher
solutions of the special-function type do exist for values of the parameters that are simply
related to those of the lowest, ‘fundamental’, solutions and the solution of the Painlevé
equation can be expressed as a ratio of(N × N) Wronskian or Casorati determinants (the
elements of which are special functions). The fundamental solution is the one obtained
in the case ofN = 1 determinants. It is thus interesting to investigate the fate of these
higher Wronskian–Casorati solutions under the coalescence limit. In the following we do
not examine the full cascade from PVI to PII . As a matter of fact, knowledge of the Casorati
expressions is still fragmentary in the case of discrete Painlevé equations. We rather limit
ourselves to the coalescence PIII → PII in both the continuous and discrete setting.

We start from PIII , which is given here in a form slightly different from that of (2.18),
but which is more convenient

W ′′ = W ′2

W
+ e2Z

(
W 3− 1

W

)
+ eZ(AW 2+ B) (4.1)

(note the change of the independent variable).
The higher linearizability condition which allows the solution of PIII to be expressed in

terms ofτ -functions is

A+ B = 2(2N + 1) (4.2)
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for an integerN which in the caseN = 0 reduces to (2.21). PuttingA = −2ν + 2N and
B = 2ν + 2N + 2 we find thatW can be given as [14]

W = e−Z
(
N + ν + d

dZ
ln

(
τ ν+1
N

τνN+1

))
(4.3)

whereτ νN is just the(N ×N) Wronskian determinant

τ νN =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Jν
d

dZ
Jν . . .

dN

dZN
Jν

d

dZ
Jν

. . .
...

...

dN

dZN
Jν . . .

d2N

dZ2N
Jν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.4)

Here,Jν are Bessel functions or, more precisely,Jν(e
Z) is a solution of the equation

d2

dZ2
Jν + (e2Z − ν2)Jν = 0. (4.5)

In order to proceed to the coalescence limit, we introduce the following transformation of
the independent variable eZ = 1/δ3 + z/δ together withν = 1/δ3. Thus, forδ → 0 and
ν →∞, equation (4.5) becomes

d2J

dz2
+ 2zJ = 0 (4.6)

i.e. the Airy equation. Simultaneously, we have for the dependent variable:W = 1+ δw
and by takingA = −2/δ3+ 2N , B = 2/δ3+ 2N + 2, we obtain forw, equation PII in the
form

w′′ = 2w3+ 4zw + 4N + 2. (4.7)

The only subtle point remaining to prove is that the limit of (4.3) leads indeed to the
Wronskian solution of (4.7). As a matter of fact, (4.3) is expressed in terms ofτ ν and
τ ν+1 which involveJν andJν+1, respectively. These Bessel functions (of argument eZ) are
related throughJν+1 = e−Z(νJν − dJν/dZ). Introducing the transformation of independent
variables fromZ to z, we find thatJν+1 = Jν + O(δ). Thus, at the limitδ → 0, τ ν and
τ ν+1 are expressed in terms of thesamesolution of (4.6). In conclusion, the coalescence
of the Wronskian solutions of PIII lead indeed to the Wronskian solutions of PII [15]

w = d

dz
ln

τN

τN+1
(4.8)

for all integersN , whereτ -functions are given by (4.4), where the entries are in terms of
the solutionJ of the Airy equation (4.6).

We turn now to the case of the coalescence fromq-PIII to d-PII . We start fromq-PIII in
the form

Xn+1Xn−1 = PQ(Xn − AZ)(Xn − BZ)
(Xn − P)(Xn −Q) (4.9)

whereZ = 3n andA,B, P,Q are constants.
The higher linearizability condition is

AQ = BP31+2N (4.10)
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whereN is an integer. In the caseN = 0 one obtains the linearizability condition which is
nothing but (3.13) with3 = 1/λ. ForN = 0 we put

Xn = P + Jn+1

Jn
(4.11)

and find forJ the equation

Jn+2+ (P −Q)Jn+1+Q(AZ − P)Jn = 0. (4.12)

The functionJ is characterized by one parameterν which can be expressed in terms of the
parameters ofq-PIII asP/Q = −3ν . In fact, a simple expression forν exists for any value
of N

AP

BQ
= 31+2ν . (4.13)

Equation (4.12) is a discrete form of the Bessel equation. One can easily derive the
contiguity relations for the discrete Bessel functionJ (ν)n . We find

J (ν+1)
n = 1√

Z

(
J (ν)n +

1

P
J
(ν)

n+1

)
(4.14a)

J (ν−1)
n = 1√

Z

(
J (ν)n −

1

Q
J
(ν)

n+1

)
(4.14b)

where(ν+1) and(ν−1) are associated with values of the parametersA
√
3,B/

√
3,P
√
3,

Q/
√
3 andA/

√
3,B
√
3,P/

√
3,Q
√
3, respectively.

For genericN , the form ofX is given in terms ofτ -functions as [16]

Xn = P +
τ
(ν,N+1)
n+1 τ (ν+1,N)

n

τ
(ν,N+1)
n τ

(ν+1,N)
n+1

(4.15)

whereτ (ν,N)n is given by the(N ×N) Casorati determinant of discrete Bessel functions

τ (ν,N)n =

∣∣∣∣∣∣∣∣∣∣∣

J (ν)n J
(ν)

n+1 . . . J
(ν)

n+N−1

J
(ν)

n+2

. . .
...

...

J
(ν)

n+2N−2 . . . J
(ν)

n+3N−3

∣∣∣∣∣∣∣∣∣∣∣
. (4.16)

We now proceed to the coalescence limit and introduceX = 1+δx, P = 1−δ,Q = 1+δ,
A = 1− δ − δ2a/2, B = 1+ δ + δ2a/2 and3 = 1+ δ2α/2 leading toZ = 1+ zδ2/2.
Moreover, sinceP/Q = −3ν , we have forν at leading orderν = 2iπ/(αδ2), which means
that ν diverges at the limitδ → 0. We thus obtain d-PII in the form of (3.16) where the
parametera resulting from the limit of (4.10) is

a = α(N + 1/2). (4.17)

The coalescence of the Bessel equation (4.12) leads first to

Jn+2− 2δJn+1+ δ2(z− a)Jn/2= 0 (4.18)

and we absorb theδ factors through a gauge transformationJn = δnKn. We thus find for
K

Kn+2− 2Kn+1+ (z− a)Kn/2= 0 (4.19)

which is precisely the discrete form of the Airy equation. In the coalescence processν

disappears from the limit equation. Note that during the limiting process the solutionKn
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could a priori have kept the memory of the value ofν (through the value ofJ (ν) it came
from). However, this is not the case. In fact, sinceJn = δnKn the termJ (ν)n+1 becomes
negligible in the contiguity relations (4.14). Moreover, sinceZ goes to 1 at lowest order,
Kn are indeed independent of the indexν. By taking the limit of (4.15) we obtain the
Casorati determinant solution of d-PII . Starting from (4.16) and expressingJn in terms of
Kn we obtainτ functions of the same form (whereJn are replaced byKn) and a global
factor that is some power ofδ. However, it turns out that when we compute the ratio
appearing in (4.15) allδ but one drop out. We thus have

Xn = 1− δ + δ τ
(N+1)
n+1 τ (N)n

τ
(N+1)
n τ

(N)

n+1

(4.20)

and sinceX = 1+ δx we see that the solution of d-PII is given by [17]

xn = −1+ τ
(N+1)
n+1 τ (N)n

τ
(N+1)
n τ

(N)

n+1

(4.21)

for all integersN .

5. Conclusion

In this paper we have examined the effect of coalescence on the special solutions of the
continuous and discrete Painlevé equations. We have shown that these special solutions
follow exactly the same cascade as the Painlevé equations corresponding to the degeneration
pattern of special functions:

hypergeometric→ confluent hypergeometric→ {Weber, Bessel} → Airy .

We must emphasize here that this degeneration pattern was not previously established in
the discrete case and that this work is the first to stress this parallel between continuous and
discrete special functions.

As stated in the introduction, the Painlevé equations possess another class of special
solutions, namely the rational ones. It would be interesting to study the effect of coalescence
on these solutions. However, this study cannot be performed before the whole landscape
of rational Casorati expressions is explored and we must hasten to point out that, to date,
the results in this direction are indeed scant. The main difference between special-function
and rational solutions is that usually the fundamental rational solution is an almost trivial
one. Thus, the study of the effect of coalescence on rational solutions should be performed
on higher Casorati solutions.

In the case of discrete Painlevé equations we have limited ourselves here to the class that
has been thoroughly studied, the symmetric (one-component) mappings. The asymmetric
(two-component) class would be equally interesting to analyse. However, in this case a
considerable amount of preliminary work is needed since the special-function type solutions
of this family have not been completely studied yet. Another interesting feature of the
discrete case is that more than one coalescence cascade exists and the degeneration pattern
can be more complicated than that of the symmetric case. As suggested from the present
results on the symmetric case, the degeneration of the special-function type solutions for
asymmetric d-P should follow this pattern and would thus present considerable interest from
the point of view of discrete special functions. We expect to return to this problem in some
future work.
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